
Automating Tactically and Strategically
Alan Richardson

4 www.eviltester.com

4 www.compendiumdev.co.uk

4 @eviltester

TESTING ASSEMBLY 09/2017, Helsinki

http://www.eviltester.com
http://www.compendiumdev.co.uk
https://twitter.com/eviltester

Do you automate tactically
or strategically?

Automating Tactically
allows us to move fast, and
target immediate needs

Automating Strategically
allows us to gain budget
and support for longer

periods of work

We may believe we are
automating strategically
but are actually automating

tactically

Combine tactical and
strategic approaches to

better our testing efforts.

Secrets of Successful Practical
Automating
4 Get work done

4 Automate Flows

4 Multiple Abstractions

4 Abstract to libraries, not frameworks

Testing field argues about
4 Testing vs Checking

4 You can't automate testing

"Test Automation" is contentious

An Example

"Is what follows a
Test?" ...

@Test
public void createPreviewMVP() throws IOException {

 String args[] = {
 new File(System.getProperty("user.dir"),
 "pandocifier.properties").getAbsolutePath()};

 new PandocifierCLI().main(args);

 String propertyFileName = args[0];
 File propertyFile = new File(propertyFileName);
 PandocifierConfig config;
 config = new PandocifierConfigFileReader().
 fromPropertyFile(propertyFile);

 Assert.assertTrue(new File(
 config.getPreviewFileName()).exists());
}

An Example "Ce n'est pas un test", ...
4 a Test, it says it is a @Test

4 an Automated Test, it checks something (file exists)

4 an Automated Test, it Asserts on the check

4 a Tool - I use it to automatically build one of my
books

4 not an Application - it doesn't have a GUI or a
standalone execution build

This is automated
execution of a

process

We Automate Parts of our
Development Process:

Coding, Checking,
Asserting, ...

Tactical Reality - I don't
really care, I just want to

get work done
Suggests we also have 'strategic

reality'

Tools vs Abstractions
4 Gherkin

4 Specflow, Cucumber

- - - - - - - - - - - - - -

4 Gherkin is a DSL templating language

4 Specflow, Cucumber are template parsers

4 We have to create abstractions to fill in the gap

E. W. Djkstra on Abstraction
"The purpose of abstraction is not to be
vague, but to create a new semantic level in
which one can be absolutely precise."

4 1972 ACM Turing Lecture: 'The Humble Programmer'

http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html/

Regression Testing
The system rarely actually suffers

"Regression"

Continuous Condition Assertion
4 TDD, ATDD, Automated execution

4 All of these provide an ongoing safety net which
might mean we don't need to revisit areas in the
future (if we also tested them)

4 They don't mean that we have 'tested' them now

Coverage - All coverage is Model Based
4 Code coverage based on source code model

4 What about requirements, system interfaces,
states, flows?

4 Code coverage is a useful metric for TDD coverage

4 coverage models based on risk

Tactical vs Strategic
Automating

Strategic does not mean 'strategy
document'

Automating as part of a
Testing Strategy

Automating Tactically vs Strategically

What is Tactical? What is Strategic?

Solve a problem Agreed & Understood Goals

Short Term Long Term

Change as necessary Slower to Change

Your Time 'project' time

Warning - sometimes tactics look like
strategy
4 Use of Jenkins is not Continuous Integration

4 Cucumber/Specflow (Gherkin) != ATDD or BDD

4 Automated Deployments != Continuous Delivery

4 Containers != always good environment provision

4 Page Objects != always good system abstractions

You know you are Automating
strategically when...
4 Reduced Maintenance & Change

4 Everyone agrees why

4 No fighting for 'time'

4 It's not about roles

4 It gets done

How do we automate?
4 not about "test automation"

4 it is about automating tasks

4 automate the assertions used to check that the
stories are still 'done'

Automate flows through
the system

- vary data

- abstract the execution

Automating Strategically with
Abstractions
see also "Domain Driven Design"

"modeling the system in code"

4 abstractions are about modelling - people seem to be
scared of having too many models

No Abstractions - Web
Testing Example

@Test
public void canCreateAToDoWithNoAbstraction(){
 WebDriver driver = new FirefoxDriver();
 driver.get("http://todomvc.com/architecture-examples/backbone/");

 int originalNumberOfTodos = driver.findElements(
 By.cssSelector("ul#todo-list li")).size();
 WebElement createTodo = driver.findElement(By.id("new-todo"));
 createTodo.click();
 createTodo.sendKeys("new task");
 createTodo.sendKeys(Keys.ENTER);
 assertThat(driver.findElement(By.id("filters")).isDisplayed(), is(true));

 int newToDos = driver.findElements(
 By.cssSelector("ul#todo-list li")).size();
 assertThat(newToDos, greaterThan(originalNumberOfTodos));
}

But there were Abstractions (Lots of them)

4 WebDriver - abstration of browser

4 FirefoxDriver - abstraction Firefox (e.g. no version)

4 WebElement - abstraction of a dom element

4 createToDo - variable - named for clarity

4 Locator Abstractions via methods e.g. findElement

4 Manipulation Abstractions .sendKeys

4 Locator Strategies By.id

Using Abstractions - Same
flow

@Test
public void canCreateAToDoWithAbstraction(){
 TodoMVCUser user =
 new TodoMVCUser(driver, new TodoMVCSite());

 user.opensApplication().and().createNewToDo("new task");

 ApplicationPageFunctional page =
 new ApplicationPageFunctional(driver,
 new TodoMVCSite());
 assertThat(page.getCountOfTodoDoItems(), is(1));
 assertThat(page.isFooterVisible(), is(true));
}

What Abstractions were there?
4 TodoMVCUser

4 User

4 Intent/Action Based

4 High Level

4 ApplicationPageFunctional

4 Structural

4 Models the rendering of the application page

REST Test - No
Abstractions

@Test
public void aUserCanAccessWithBasicAuthHeader(){

 given().
 contentType("text/xml").
 auth().preemptive().basic(
 TestEnvDefaults.getAdminUserName(),
 TestEnvDefaults.getAdminUserPassword()).
 expect().
 statusCode(200).
 when().
 get(TestEnvDefaults.getURL().toExternalForm() +
 TracksApiEndPoints.todos);
}

But there were Abstractions
4 RESTAssured - given, when, then, expect, auth, etc.

4 RESTAssured is an abstraction layer

4 Environment abstractions i.e. TestEnvDefaults

Lots of Abstractions

But a lack of flexibility

Different abstractions to
support flexibility

@Test
public void aUserCanAuthenticateAndUseAPI(){

 HttpMessageSender http = new HttpMessageSender(
 TestEnvDefaults.getURL());

 http.basicAuth(TestEnvDefaults.getAdminUserName(),
 TestEnvDefaults.getAdminUserPassword());

 Response response = http.getResponseFrom(
 TracksApiEndPoints.todos);

 Assert.assertEquals(200, response.getStatusCode());
}

An API Abstraction

@Test
public void aUserCanAuthenticateAndUseAPI(){

 TodosApi api = new TodosApi(
 TestTestEnvDefaults.getURL(),
 TestEnvDefaults.getUser());

 Response response = api.getTodos();

 Assert.assertEquals(200, response.getStatusCode());
}

Automating API vs GUI

Automate at the interfaces
where you can interact
with the system.

Architecting to Support...

- Testing - Support

- Deployment - Automating

- Monitoring - Devops

- Releasing - etc.

Abstractions support different types
of testing
4 regular automated execution with assertions

4 creation and maintenance by many roles

4 exploratory testing

4 stress/performance testing (bot example) requires
thread safe abstractions

Good abstractions
encourage creativity, they
do not force compliance and

restrict flexibility.

Supports Law of Requisite
Variety

"only variety can destroy variety" -
W. Ross Ashby

"only variety can absorb variety" -
Stafford Beer

Frameworks can 'Destroy' variety
4 Frameworks force us to comply with their structure

4 or things get 'hard'

4 or we don't reap the benefits from the Framework

4 Some things are not possible

4 Some things never occur to you to do

We have a lot of models
4 user intent model - what I want to achieve

4 user action model - how I do that

4 interface messaging model - how the system
implements that

4 admin models, support models, GUI models

And models overlap
e.g. user can use the API or the GUI to

do the same things

When we don't do this
4 test code takes a long time to maintain

4 test code takes too long to write

4 test code is hard to understand

4 test code is brittle - "every time we change the app
the tests break/ we have to change test code"

4 execution is flaky - intermittent test runs - "try
running the tests again"

Example: Tactical Approach on Agile
projects
4 exploratory testing to get the story to done

4 create a tech debt backlog for 'missing' automated
tests

4 @Test code is tactical and we can knock it up (not as
good as production)

Example: Strategic Approach on Agile
Projects
4 automate assertion checking of acceptance criteria
for "done"

4 ongoing execution of the assertions for the life of
the story

Example: Strategic Approach on Agile
Projects implies...
4 maintained for the life of the story in the application

4 deleting the @Test code when no longer relevant

4 amending code structure to make relevant as stories
change and evolve

4 @Test code is strategic asset (just like production
code)

Why labour the point?
4 "test automation" often means "testers do the

automating"

4 testers may not program as well as programmers

4 testers may not know various programming patterns

4 when programmers see @Test code written by testers
they often don't want to touch it or maintain it

Move from Abstractions
such as 'Programming' and
'Testing' to 'Developing'

I say I'm a "Test
Consultant"

I'm really a "Software Development
Consultant"

Testing is Part of the Development
process

Summary
4 Automate Strategically

4 ongoing assertion checking automated in @Test code

4 Abstractions model the system in code

4 Write abstractions at multiple levels

4 Good abstractions can support exploratory testing

4 Write good code all the time

Learn to "Be Evil"
4 www.eviltester.com

4 @eviltester

4 www.youtube.com/user/EviltesterVideos

http://www.eviltester.com
https://twitter.com/eviltester
https://www.youtube.com/user/EviltesterVideos

Learn About Alan Richardson
4 www.compendiumdev.co.uk

4 uk.linkedin.com/in/eviltester

http://www.compendiumdev.co.uk
http://uk.linkedin.com/in/eviltester

Follow
4 Linkedin - @eviltester

4 Twitter - @eviltester

4 Instagram - @eviltester

4 Facebook - @eviltester

4 Youtube - EvilTesterVideos

4 Pinterest - @eviltester

4 Github - @eviltester

https://uk.linkedin.com/in/eviltester
https://twitter.com/eviltester
https://www.instagram.com/eviltester
https://facebook.com/eviltester/
https://www.youtube.com/user/EviltesterVideos
https://uk.pinterest.com/eviltester/
https://github.com/eviltester/

BIO
Alan is a test consultant who enjoys testing at a
technical level using techniques from psychotherapy
and computer science. Alan is the author of the books
"Dear Evil Tester", "Java For Testers" and "Automating
and Testing a REST API". Alan's main website is
compendiumdev.co.uk and he blogs at
blog.eviltester.com (see also TesterHQ.com)

http://www.eviltester.com/page/dearEvilTester/
http://javafortesters.com/page/about/
http://compendiumdev.co.uk/page/tracksrestapibook
http://compendiumdev.co.uk/page/tracksrestapibook
http://compendiumdev.co.uk
http://blog.eviltester.com
http://testerhq.com

