
FORTIFY

FORTIFY

Automating application security testing…
and shifting it left

Frans van Buul, Micro Focus

FORTIFYFORTIFY

About me

 Presales for the Micro Focus Fortify application security testing
portfolio, since 2014.

 Based in the Netherlands, leading the Fortify presales practice across
EMEA and LATAM.

 Background in security consulting/auditing and (Java) software
development.

 Contact me: frans.buul@microfocus.com

2

mailto:frans.buul@microfocus.com

FORTIFY

Agenda

3

 Introduction to Application Security – what is and why care?

 Testing for application security – techniques and challenges

 Shifting left application security

Want to learn about the great Fortify products for all of this?

Come to our booth, drop me an email, or visit
https://www.microfocus.com/en-us/solutions/application-security

https://www.microfocus.com/en-us/solutions/application-security

FORTIFY

Introduction to Application
Security – what is and why care?

FORTIFY5

The security of
controlled access

The security of not
bypassing security

functionality.

Required for

FORTIFY

A security quadrant

6

Application
Security

Security
Functionality

Firewalls,
IDS/IPS, SIEM,
patching, anti-
malware, etc.

Identity &
Access

Management

Infra level

Application level

Controlled accessAvoiding bypassing

FORTIFY

OWASP Top-10 2017

7

Injection
Broken

Authentication
Sensitive Data

Exposure
XML External

Entities

Broken Access
Control

Security
Misconfiguration

Cross-Site Scripting
Insecure

Deserialization

Using Components
with Known

Vulnerabilities

Insufficient Logging
& Monitoring

FORTIFY8

Application
Security

Security
Functionality

Firewalls,
IDS/IPS, SIEM,
patching, anti-
malware, etc.

Identity &
Access

Management

Infra-level security
measures do not

protect against this
type of problem!

Testing for security
functionality is different from

testing for application
security!

AppSec needs specific attention

FORTIFYFORTIFY

Factors making AppSec a big current issue

 Historically, most security investments have gone into infra. Remaining weak spots are
in applications.

 Growing application portfolios and application connectivity.

 Lack of developer training and awareness.

 Rapid release cycles.

9

FORTIFY

Manual pentesting and code reviews don’t offer needed
scale and are too slow

10

d

AppApp

2010

Release Frequency

Number of Applications

2020+

App App

2015

FORTIFY

Testing for application security –
techniques and challenges

FORTIFYFORTIFY

Dynamic Application Security Testing (DAST)

 Automatically testing a running application for security vulnerabilities.

 “Automated hacker”

 Usually done on test/QA environment, occassionally also done on production.

12

FORTIFYFORTIFY

DAST process

13

Target webapplication

DAST Tool
(Micro Focus case: WebInspect)

Vulnerability
Information

Config Crawl Audit

Report

Usually operated by security tester;
sometimes run automatically from cmd

line or API

FORTIFYFORTIFY

IAST: Interactive Application Security Testing

14

Target webapplication

DAST Tool
(Micro Focus case: WebInspect)

Config Crawl Audit

DAST/IAST Agent “A helper behind enemy lines”.
Provides detailed info to the

DAST tool to optimize its attacks.

FORTIFY

DAST pros and cons

Pros

 Independent of programming language.

 In a way, similar to functional testing.

 Few “false positives”

 Can be done both manually and automated
as part of a build pipeline.

 Can be integrated with functional testing
tools and issue trackers.

Cons

 Still relatively slow (several hours to days) and
late in the cycle.

 Feedback in terms of behaviour – not super
actionable for developers.

 Limited to web-based (HTTP) systems

 Needs to have the application running.

 Sensitive to configuration (log-in scripts,
avoiding being hit by security controls).

 Prone to “false negatives” if configuration not
correct.

15

FORTIFY

Shifting left application
security

FORTIFYFORTIFY

Static Application Security Testing (SAST)

 Automatically analyzing the source code of an application for security vulnerabilities.

 “Automated code reviewer”

 Done based on code in the code repository; usually running automated every night.

17

FORTIFYFORTIFY

SAST process

18

Source code
(Java,

JavaScript, C#,
ABAP, …)

SAST tool
(Micro Focus:
Fortify SCA)

Vulnerability
Information

May be invoked from
command line, IDE, Jenkins,

etc.

FORTIFY

SAST versus static analysis for quality:
Complementary solutions

SAST

 Fortify, Checkmarx, Veracode, Coverity, …

 Test for security, not for general quality.

 Slow, complex flow-analysis algorithms plus
pattern-matching algorithms.

Static Analysis for Quality

 SonarQube, FxCop, CheckStyle, …

 Check for quality, with a bit of security.

 Fast, simple pattern-matching algorithms.

19

FORTIFY

SAST pros and cons

Pros

 Fast (minutes to hours in extreme cases)

 Very detailed feedback to developers, easy
to address issues.

 Web, mobile, desktop, embedded, ….

 Can find things that DAST cannot find.

Cons

 Prone to false positives.

 Requires that the programming language is
supported by the SAST tool.

 Requires that the programming framework is
understood by the SAST tool.

 Misses certain things that DAST can find.

 Fast, but still not real time.

 Not a good solution for 3rd party
dependencies.

20

FORTIFY

Two modern SAST developments

Software Composition Analysis (SCA)

 For most business apps, the custom code is
just the tip of the iceberg: the majority of
code is open source libraries!

 SCA is about testing the versions of the
libraries against known vulnerable versions,
and recommending patching.

 Micro Focus: integration with Sonatype, Snyk
and others.

Real-time feedback

 Full SAST can’t be done in real-time.

 Part of the SAST scanning can be done in
real-time, providing immediate feedback to
the dev inside the IDE.

 Micro Focus: Security Assistant

21

FORTIFY

Combine SAST, DAST and sound production monitoring for
complete application security.

22

Improve SDLC Policies

Application security for the SDLC

Continuous Monitoring and
Protection
Monitor and protect software
running in Production

3

Security Testing (DAST)
Embed scalable security into
the development tool chain

2

Secure Development (SAST)
Continuous feedback on the
developer’s desktop at DevOps
speed

1

FORTIFY

FORTIFY

Thank you!

