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and shifting it left
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About me

 Presales for the Micro Focus Fortify application security testing
portfolio, since 2014.

 Based in the Netherlands, leading the Fortify presales practice across
EMEA and LATAM.

 Background in security consulting/auditing and (Java) software 
development.

 Contact me: frans.buul@microfocus.com
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Agenda
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 Introduction to Application Security – what is and why care?

 Testing for application security – techniques and challenges

 Shifting left application security

Want to learn about the great Fortify products for all of this? 

Come to our booth, drop me an email, or visit
https://www.microfocus.com/en-us/solutions/application-security

https://www.microfocus.com/en-us/solutions/application-security
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Introduction to Application 
Security – what is and why care?
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The security of 
controlled access

The security of not
bypassing security 

functionality.

Required for
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A security quadrant
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Application 
Security

Security 
Functionality

Firewalls, 
IDS/IPS, SIEM, 
patching, anti-
malware,  etc.

Identity & 
Access 

Management

Infra level

Application level 

Controlled accessAvoiding bypassing
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OWASP Top-10 2017

7

Injection
Broken

Authentication
Sensitive Data 

Exposure
XML External

Entities

Broken Access 
Control

Security 
Misconfiguration

Cross-Site Scripting
Insecure

Deserialization

Using Components
with Known

Vulnerabilities

Insufficient Logging
& Monitoring
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Application 
Security

Security 
Functionality

Firewalls, 
IDS/IPS, SIEM, 
patching, anti-
malware,  etc.

Identity & 
Access 

Management

Infra-level security 
measures do not

protect against this
type of problem!

Testing for security 
functionality is different from

testing for application
security!

AppSec needs specific attention
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Factors making AppSec a big current issue

 Historically, most security investments have gone into infra. Remaining weak spots are 
in applications.

 Growing application portfolios and application connectivity.

 Lack of developer training and awareness.

 Rapid release cycles.
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Manual pentesting and code reviews don’t offer needed
scale and are too slow
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Testing for application security –
techniques and challenges
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Dynamic Application Security Testing (DAST)

 Automatically testing a running application for security vulnerabilities.

 “Automated hacker”

 Usually done on test/QA environment, occassionally also done on production.
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DAST process
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Target webapplication

DAST Tool
(Micro Focus case: WebInspect)

Vulnerability
Information

Config Crawl Audit

Report

Usually operated by security tester; 
sometimes run automatically from cmd

line or API
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IAST: Interactive Application Security Testing
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Target webapplication

DAST Tool
(Micro Focus case: WebInspect)

Config Crawl Audit

DAST/IAST Agent “A helper behind enemy lines”. 
Provides detailed info to the

DAST tool to optimize its attacks.
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DAST pros and cons

Pros

 Independent of programming language.

 In a way, similar to functional testing.

 Few “false positives”

 Can be done both manually and automated
as part of a build pipeline.

 Can be integrated with functional testing
tools and issue trackers.

Cons

 Still relatively slow (several hours to days) and
late in the cycle.

 Feedback in terms of behaviour – not super 
actionable for developers.

 Limited to web-based (HTTP) systems

 Needs to have the application running.

 Sensitive to configuration (log-in scripts, 
avoiding being hit by security controls).

 Prone to “false negatives” if configuration not
correct.
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Shifting left application
security
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Static Application Security Testing (SAST)

 Automatically analyzing the source code of an application for security vulnerabilities.

 “Automated code reviewer”

 Done based on code in the code repository; usually running automated every night.
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SAST process
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Source code
(Java, 

JavaScript, C#, 
ABAP, …)

SAST tool
(Micro Focus: 
Fortify SCA)

Vulnerability
Information

May be invoked from
command line, IDE, Jenkins, 

etc.
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SAST versus static analysis for quality:
Complementary solutions

SAST

 Fortify, Checkmarx, Veracode, Coverity, …

 Test for security, not for general quality.

 Slow, complex flow-analysis algorithms plus 
pattern-matching algorithms.

Static Analysis for Quality

 SonarQube, FxCop, CheckStyle, …

 Check for quality, with a bit of security.

 Fast, simple pattern-matching algorithms.
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SAST pros and cons

Pros

 Fast (minutes to hours in extreme cases)

 Very detailed feedback to developers, easy 
to address issues.

 Web, mobile, desktop, embedded, ….

 Can find things that DAST cannot find.

Cons

 Prone to false positives.

 Requires that the programming language is 
supported by the SAST tool.

 Requires that the programming framework is 
understood by the SAST tool.

 Misses certain things that DAST can find.

 Fast, but still not real time.

 Not a good solution for 3rd party 
dependencies.

20



FORTIFY

Two modern SAST developments

Software Composition Analysis (SCA)

 For most business apps, the custom code is 
just the tip of the iceberg: the majority of 
code is open source libraries!

 SCA is about testing the versions of the
libraries against known vulnerable versions, 
and recommending patching.

 Micro Focus: integration with Sonatype, Snyk
and others.

Real-time feedback

 Full SAST can’t be done in real-time.

 Part of the SAST scanning can be done in 
real-time, providing immediate feedback to
the dev inside the IDE.

 Micro Focus: Security Assistant
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Combine SAST, DAST and sound production monitoring for 
complete application security.
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Improve SDLC Policies

Application security for the SDLC

Continuous Monitoring and 
Protection
Monitor and protect software 
running in Production

3

Security Testing (DAST)
Embed scalable security into 
the development tool chain 

2

Secure Development (SAST)
Continuous feedback on the 
developer’s desktop at DevOps 
speed

1
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Thank you!


